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Abstract. It has recently been demonstrated by Skjeltorp that a monolayer of non-magnetic 
inclusions in a paramagnetic fluid crystallises when a perpendicular magnetic field is 
applied. Temperature is scaled by this field and 2 D  melting has been observed. Here we 
examine the energetics of the stability of the regular structures formed. Competing dipolar 
interactions and a frustration under distortions give a range of possibilities including a 
strictly Z D  triangular lattice, a quasi 2~ distorted triangular lattice and a quasi 2D square 
lattice, A second melting possibility becomes evident, but we restrict our analysis of the 
interactions to zero temperature. 

The underlying lattice energies are all close and the delicacy involved in calculating 
their energies, arising from the long-range character of the forces involved, requires a 
modification of the Ewald technique. We perform stability analysis to find instability 
modes and their amplitudes. 

1. Introduction 

Recently, Skjeltorp (1983, 1984) has shown that a monolayer of micron diameter 
monodispersed polystyrene spheres in a magnetic colloid (see, e.g. Rosensweig 1979) 
will crystallise on a triangular lattice in the presence of a magnetic field applied 
perpendicular to the layer. This novel result is a consequence of the effective magnetic 
dipole moment associated with each sphere due to the polarisation of the surrounding 
magnetic fluid by the field. These dipoles, actually dipole holes, repel each other 
leading to a crystallisation when the concentration of spheres is held constant. 

As noted by Skjeltorp, this system could provide an interesting model for studying 
collective phenomena, as a function of temperature, in two dimensions. It therefore 
appears worthwhile to examine it in more detail and, in particular, to determine the 
energetically stable configuration as a function of the system parameters. This is the 
main objective of this paper. We shall show that, neglecting temperature, a strictly 2~ 

triangular structure is, in fact, stable only when the ratio of magnetic layer thickness 
to inter-sphere separation is below a critical value. Above this value, a quasi ZD 

triangular structure is stable, while at still larger values of this ratio it appears that a 
quasi 2~ structure characterised by a square lattice is the globally stable state. 

Our approach is as follows: in § 2, we develop the theoretical framework needed 
to calculate the interaction energy of ZD arrays of non-magnetic spherical inclusions 
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immersed in a strongly paramagnetic fluid layer. Both triangular and square lattice 
arrays are considered. The possibility that these systems can lower their energy by a 
spontaneous distortion into a quasi 2~ pattern is also considered. Next, in P 3 ,  we 
discuss how the lattice sums for the different interaction energies can be efficiently 
and accurately evaluated by a combination of analytic and numerical techniques. In 
order to do this the classical Ewald method must be appropriately modified. This is 
carried out in the appendix. The lattice sum evaluations and the resulting interaction 
energies for the two undistorted and three distorted lattice configurations being con- 
sidered are then given as functions of two parameters-one characterising the magnetic 
properties of the fluid and the second the relative thickness, A, of the magnetic layer 
compared with the average spacing between inclusions. The first parameter, the 
paramagnetic susceptibility of the fluid, determines the strength of image effects 
compared with dipolar interactions within the layer. The second parameter, A,  
expresses how .effectively these image forces, a consequence of the layer having a 
surface, compete with the direct interactions and determine the structure. Finally in  
§ 4, we discuss the results of our analysis and compare them with those reported by 
Skjeltorp. Promising lines for future investigations are indicated. 

2. Theoretical analysis 

2.1. General considerations 

We begin our analysis with the simple case of an isolated sphere of radius p and 
permeability ps suspended in a magnetic fluid of permeability pf. S I  units will be used 
throughout. In a uniform field H, the change in the scalar potential outside the sphere 
is (see, e.g., Bleaney and Bleaney 1978) 

where 

is the effective dipole moment of the sphere. For p., = po, pf = po( 1 +Xf) ,  this becomes 

where V is the volume of the sphere and Xf is the effective susceptibility. 
We next consider a collection of physically identical spheres, having moments U, 

and separated by distances rnp The total interaction energy of such a system is (Bleaney 
and Bleaney 1978) 

U = - c  ui * Bj( r i )  
i < j  

3 ( u i .  r i j ) ( u , *  r i j )  
r', 
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When the moments ul are all aligned, (3a)  takes the simpler form 

where e,, is the angle between ul and rv. However, (2) can be substituted directly into 
( 3 )  only when ul is independent of the dipolar field of the site i. This, of course, is 
not the case here. When the dipolar field at site i is aligned with H, a dipole U',  

corrected to first order and valid when p << ( ry),,,,", can be obtained by replacing ul by 

Here aJI = u;/ui is a geometrical factor independent of H. 
Up to this point the magnetic field in which the polystyrene spheres are suspended 

has been regarded as occupying all of space. In fact, it is restricted to a finite 2~ layer 
of thickness h as illustrated in figure 1. This has two consequences. One, the applied 
field H within the magnetic fluid is related to the externally applied field Ha by 

H =  HalPf (5) 

k t H C  
Pf 

Figure 1. Schematic of spherical inclusions in a magnetic layer. The applied field Ha is 
perpendicular to the layer width h, of ferro-fluid of permittivity pLr. Perpendicular displace- 
ment d is measured from the (broken) centre of the fluid. Spherical inclusions, of radius 
p, are shown at the points z = O  and z =  d.  They have the same permittivity, pLo, as the 
medium exterior to the fluid. 

Two, the dipolar field must satisfy the usual boundary conditions at the top and bottom 
surfaces of the magnetic layer. A convenient way of accomplishing this is by using 
the method of images. Consider a single sphere displaced at a height z = d from the 
layer centre as shown in figure 1. By analogy with the treatment of Weber (1950) for 
the case of dielectric media, it is straightforward to show that the dipolar field within 
the layer is that of the real dipole plus that of two sets of image dipoles, one located 
in the space z z i h  and the other in z s  -4h. All the image dipoles, of course, lie on 
the line perpendicular to the fluid layer and passing through the centre of the sphere. 
Their positions and magnitudes are given by 

Z, = Ih + (-1)'d, (6a) 
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VI = [ - (Pf- PO)/(Pf+ PO)l ' l la  

( - 7 ) l l l q  1=*1,*2,. * .  . ( 6 b )  

Images in the upper half space have 1 > 0 and in the lower 1 < 0. All the dipoles, both 
real and image, are regarded as lying in a medium with permeability pf. 

When a collection of real dipoles a#, located at positions (xz, yl, d l ) ,  are in the 
magnetic layer ( 6 )  is simply generalised to 

( 7 0 )  

1 = * 1 , * 2  , . . . ,  i = 1 , 2  ) . . . .  ( 7 6 )  

z , I  = lh + ( - l ) ' d t ,  

UZI = (-7) ut, 
I II 

To take account of the additional polarisation due to the dipolar field we again use 
(4), with the sum on j now being over all other real dipoles and all image dipoles. 
Note that, for a given real dipole, all its image dipoles satisfy 

all = ff;1/u; = U l / / W l  = (-17)'". (8) 

The total interaction energy of the system is now obtained by including in U the 
energies of attraction between pairs of real and image dipoles. Note that these energies 
are, however, equal to one-half the energies of interaction between equivalent real 
dipoles. Thus ( 3 b )  is replaced by 

with the i sum being taken over real dipoles only and the j sum over both real and 
image dipoles. (When i and j refer to a pair of real dipoles, the additional factor of 

in (9) over and above ( 3 6 )  is to avoid double counting). 

2.2. The two-dimensional triangular and square lattices 

When thermal fluctuations are negligible, the vertical position of an isolated polystyrene 
sphere is determined by the buoyancy and magnetic forces acting upon it. In a 
sufficiently strong applied field, the latter is the dominant effect and results in the 
sphere positioning itself in the middle of the layer. This is related to the magnetic 
levitation effect first reported by Rosensweig (1966) .  Assuming for the moment that 
this centring also holds for each of N individual spheres when they are packed in a 
monolayer at a density of D spheres/cm*, we now determine whether a triangular or 
square lattice configuration has the lower energy. Although these configurations are 
obviously two dimensional, their self-energies are, in a sense, intermediate between 
those of ZD ferro- and 3~ antiferromagnetic systems. That is, as pf increases from 
unity to infinity we interpolate smoothly between these two limiting cases. We shall 
return to this point in 0 3 .  

Consider first the triangular (T) lattice. The lattice spacing a,  given by 

a = ( 2 / J 5 ) ' I 2 /  D'I2 (10) 

is a convenient length scale and we therefore define a normalised layer thickness 
A = h / a .  By symmetry, the moment ratios aij are simply given by aij = (-7)lf1, with 
1 = 0 corresponding to the case wherein index j denotes a real dipole. Defining 

U = U / (  v ' X f H ; ~ ~ / 8 ~ a ~ )  (11) 
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we have 

with 

and 

1 = 
T n,m,f 

( -Y / ) ’ ” (  1 - 3i2h2/ fT)/  f : / 2 ,  

f T ( A ) = ( n 2 + m 2 + n m + 1 2 A 2 ) .  

The sum in (12c )  is over all integer values of n, m and l except for n = m = 1 = 0. 
We now turn to the square (S) lattice. Here the lattice spacing b is 

and we have 

f s ( A s ) = ( n 2 + m 2 + 1 2 A ~ ) ,  

A; = 2 A 2 /  J3. 
As before, the point n = m = 1 = 0 is excluded from the sum in ( 1 4 b ) .  The evaluation 
of the lattice sums Z T ,  Zs will be discussed in § 3 .  

2.3. The distorted triangular and square lattices 

In § 2.2 it was assumed that the magnetic forces order all the polystyrene spheres in 
a single monolayer. We shall now show that this assumption is valid only when A, 
the normalised layer thickness, is sufficiently small. To demonstrate this let us consider 
a perturbation of the monolayer state wherein each of the spheres is moved vertically 
a distance di<< h. Whenever such a perturbation results in an increase in the system 
energy, the monolayer lattice is stable. If, however, there exists any set { d i }  for which 
the energy is decreased, the unperturbed 2~ lattice is no longer stable. 

In principle, therefore, we should calculate the system energy for an arbitrary set 
of displacements { d , } .  While this is possible, we chose to employ a simpler procedure 
in which specific distortion modes, selected by physical considerations, were analysed. 
This, of course, gives only upper bounds on the true ground-state energy. However, 
this procedure does, we believe, illustrate clearly the behaviour of the system. 

We begin by noting that the reason a distortion mode appears is that when only 
the interaction between a pair of real dipoles with r I 2 i a l ,  u2 and uIIIcr2 is considered, 
the system energy is always lowered when one of the dipoles is raised and the other 
lowered parallel to the moment axis. Thus if the colloid layer is sufficiently thick 
relative to the dipole spacing, a distortion of the 2~ monolayer is always energetically 
preferred. For a very thin colloid layer on the other hand, each dipole interacts more 
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strongly with its own images than with the neighbouring real dipoles. The total 
interaction energy is then minimised by the dipoles remaining in the middle of the 
colloid layer. 

Since dipole-dipole interactions fall off rapidly with distance, it is clear that 
physically optimal distortion modes will generally be those in which neighbouring 
dipoles are displaced in opposite directions. Consider first the square lattice. Here a 
simple mode satisfying the above criterion is obtained by dividing the system into two 
sublattices such that the nearest neighbours of a given dipole are all on the other 
sublattice. This is illustrated in figure 2( a ) .  We distort the monolayer configuration 
by raising all the dipoles belonging to one sublattice by d and simultaneously lowering 
all those on the other sublattice by the same distance. 

Figure 2. Displacement modes for the real dipole positions analysed in the text for their 
stability with respect to the undistorted 2D array. Numbers at lattice points indicate (1) = up, 
(2)  =down,  and ( 3 )  = unshifted. The figures are ( a )  distorted square lattice, denoted by 
S, ( 6 )  three-sublattice distortion of a triangular array, denoted by TA and ( c )  two-sublattice 
distortion of a triangular array, denoted by T ,. 

For the triangular lattice, however, such a simple division into two sublattices is 
no longer possible. Considering the dominance of nearest neighbours, the situation 
is closely analogous to that of the triangular antiferromagnet, namely, one of total 
frustration. In each triangular plaquette, moving one dipole up and another down in 
order to minimise their interaction energy leaves the third dipole frustrated. We 
therefore consider two alternate distortion modes which are physically appealing. 
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In the first, shown in figure 2( b) ,  we divide the system into three sublattices, such 
that all the nearest neighbours of a given dipole lie on the other two sublattices. We 
then distort the monolayer configuration by raising one sublattice by d, lowering the 
second by this amount, and leaving the third undisturbed in the middle of the third 
layer. Note that this mode preserves the three-fold rotation symmetry of the undistorted 
lattice. As indicated above, when allowing only the possibility for up or down in 
analogy to the square lattice distortions, the frustration is total and can be identified 
with the spin-; Ising triangular antiferromagnet. Allowing the third alternative of no 
motion gives a similarity to the spin-1 Ising system discussed by Blume et a1 (1971). 
Our case corresponds to that of an antiferromagnet with an easy plane when the 
amplitude of distortion is small. This is because the energy of interaction between a 
raised (or lowered) dipole and a lower (or raised) dipole is four times that of the 
interaction with a stationary one, see (16). Assembling these energies and denoting 
two neighbouring spins as S, and S2 one obtains for the Hamiltonian X: 

xa -(si+ s:-~s,s,) = -(s,  - s2)'. 
For larger amplitudes this term is amended and an additional (SI S2)' term is required. 
One should remember however this is merely an illustration of the local frustration 
and that the real problem has long range forces, decaying like l / r5  considering 
distortional energy changes. 

In the second distortion mode, shown in figure 2( c), we divide the triangular lattice 
into only two sublattices. In this case, only four of the six nearest neighbours of a 
given dipole are on the other sublattice and the three-fold symmetry of the original 
lattice is lost. In the distorted state, dipoles on one of the sublattices are raised by d 
and on the other are lowered through the same distance. Note that this configuration 
is similar in some respects to the distorted square lattice. 

Defining the normalised displacement 

(=  d / a  (15 )  

we wish to determine 6 = [(A, q )  and the interaction energies for the three specific 
distortion modes shown in figure 2. In the vicinity of the spontaneous distortion 
threshold, e2<< 1 and we can conveniently expand the relevant interaction energies in 
(. Neglecting the dipole moment correction (this will be justified in § 4), we obtain 
expressions of the form 

U = uo+ U 2 t 2 +  U 4 t 4 + .  . . (16) 
with u4> 0 for all three distortion modes. The spontaneous distortion thresholds are 
thus determined by setting u2(A, q )  = 0. When u2 > 0, [ = 0, U = uo and when u2 < 0, 

p=+-  u2/ 2% U = U()- u:/4u4. (170, b )  

For the square lattice distortion mode of figure 2(a ) ,  we have 
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S4(As) = (1 -2112Ai/ fs+ 63l4A:/ f 2,-46 X216A6,/ f 2). (18d) 

The sum ( a l )  is over all integers (n, m, I )  satisfying (n - m )  = 1 mod 2, with 1 even 
while the sum (a2)  is over all (n, m, I )  with 1 odd. 

For the triangular lattice distortion mode TA shown in figure 2(b), the relevant 
expressions are 

t2(A) = (3 -301*A2/f;+35l4A4/f:), 

f4(A) = (1 - 21 /’A2/ j T +  6314A4/ f - 46 X 2f6A6/ f +). (19d) 

The sums ( b l )  and (b2) are over integers (n, m, I )  satisfying n = 0 mod 3 and rn = 
1 mod 3, with I even and 1 odd, respectively. The sum (b3) is over all (n, m, I )  with 1 
odd. 

Finally, for the triangular lattice distortion mode T I l  illustrated in figure 2(c), we 
obtain 

with the sums (c l ) ,  (c2) over all integers (n, m, I )  satisfying n odd, 1 even and n even, 
1 odd, respectively. 

3. Results for the lattice energy calculations 

3.1. Calculation of the undistorted lattice energies 

We first outline the method used to calculate the interaction energy of a 3~ system 
formed by a planar array of dipoles and its infinite set of images. This system of 
dipoles has analogues in the classical theory of elementary magnetic dipoles. When 
the relative image strength (-7)I’l (where 1 denotes the number of the image plane) 
vanishes (7 + 0), the fluid slab is of the same composition as the outside and we have 
a simple, ferromagnetically ordered planar lattice. When the ferro-fluid permittivity, 
pr, becomes much larger than that (p,,) external to the fluid, the image strengths become 
equal to those of the real dipoles (7 -+ 1). Since the image dipole orientations alternate 
from plane to plane, the array of identical dipoles is ferromagnetically ordered within 
planes and antiferromagnetically ordered between planes. These two well known limits 
(Cohen and Keffer 1955) will allow us to check the accuracy of our numerical results. 
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We are interested in the interaction energy per real dipole as a result of its 
interactions with the other real dipoles (in the same plane) and with all the images. 
Since the image strengths vary from plane to plane it is best not to calculate the energy 
directly as a 3~ sum, but instead as the sum of the interactions of the real dipole with 
the fields resultant at its site from each plane. Each such field, resulting from a given 
plane, is then accorded the appropriate weight, (-q)”’, in the sum over all planes. 

Before calculating the field at the origin resulting from the dipoles in an arbitrary 
plane we give a simple argument for the variation with distance to the plane of the 
field strength emanating from that plane. Let the plane under consideration be at z = 0 
and the point of observation at R = (0, 0, z = R ) .  The field from a dipole decays as 
l /  r 3 ,  so at distance r away we might also expect the total field from a plane of dipoles 
to be slowly decaying. The subtle convergence and boundary condition effects associ- 
ated with dipolar fields in ferromagnets result from this. However, at fixed z, the 
potential @ will be periodic in x and y due to the translational invariance of the dipole 
array at z = 0. Further, 02@ = 0 and it follows that k: + k: + k: = 0, the k,’s beiag the 
appropriate Fourier wavevectors characterising the spatial variation of 0. Since the 
vectors k,, k,. are real, k l  0 and there is an exponential decay of the potential (and 
field) as the distance R from the plane increases. Thus, when resolved into contributions 
from dipole planes, the convergence of the total field at a site will be very good. 
However, problems in evaluating the field due to a given plane remain since the 
convergence of sums involving l /  r3 interactions is conditional in three dimensions. 
Physical manifestations of this are the dependence of ferromagnetic energies on sample 
shape (the boundaries are always relevant) and the distinction between the transverse 
and longitudinal limits for a ferromagnet. This has been discussed in detail by Cohen 
and Keffer (1955). The slow convergence in the plane presents a practical difficulty 
as well. The two undistorted lattice types between which we wish to distinguish, square 
and triangular, have interaction energies differing typically by less than 1 O/O . To evaluate 
lattice sums with an accuracy much better than this makes a direct summation out of 
the question and one must resort to the Ewald technique (see Nijboer and de Wette 
1957). However, for a system whose properties (dipole strength) vary plane by plane 
as one moves away from the origin, the technique must be generalised. This is done 
in the appendix, where we review and extend the Ewald technique to cover our present 
needs. We indeed find the exponential decay expected from the general considerations 
given above. 

The dimensionless sums to be evaluated are given in (12c)  and (14b). These sums 
are functions of a single parameter A,  the ratio of thickness of ferro-fluid to (triangular) 
lattice spacing. The latter is related to the areal number density D by (10). The 
interaction energy of a plane a distance R away from the site of interest is, from the 
appendix: 

E, ( R )  = (yl [ r(;, r ( r A  +R)2)P2(cos e ,A+R) / l rA  + RI3 

exp(-rR*- rk:) 
r 3 / 2  

-- 
U 

where T(x) and r( n, x)  are the complete and incomplete gamma functions respectively, 
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A labels a site in the real or reciprocal (k) space lattice, U is a cell area in the real 
lattice (reduced by either a’ or b2, as appropriate; that is, iJ3 or 1 for triangular or 
square), P2 is the second Legendre polynomial whose argument is the cosine of the 
angle 8 that the dipole position vector r, + R makes with the field direction, and erfc 
is the complementary error function. When R = 0 the sum is within the plane of real 
dipoles and the point r, = O  must be excluded. Details are given in the appendix. 

3.2. Results for the undistorted lattice energies 

The lattice sums ET, Es were evaluated as functions of 17 and A. As we shall discuss 
in § 4, in cases of experimental interest, k f <  1 and p / a  <f. Thus y < 5 x low3 and y ET 
and (2/J3)3/2 y Es are both less than 0.05 for relevant values of A. We therefore neglect 
the dipole field correction terms in (12a) and (14a) and show, in figures 3 and 4, the 
quantities 

UT = c, us = (21 J513/* E. (22) 
T S 

In figure 3 the undistorted interaction energies uT and us are plotted against the relative 
image strength 17 for A = O . 8 ,  1.0, 1.2, and CO. For the square lattice the values of A 
indicated correspond to the values the lattice would have if it were reformed into a 
triangular lattice having the same areal number density D. This corresponds to the 
scaling in (14) where, because of (13) ,  the square lattice energy is scaled by (2/J3)3/2 

Figure 3. The reduced energies uT and us of the strictly 2D triangular and square lattices, 
respectively, and their image systems. Energy is plotted against the parameter r )  which 
determines the relative image strength, ( - r ) ) ’ ,  for the Ith image plane relative to the real 
dipole array. Results are given for A = O . 8 ,  1.0, 1.2 and W. This parameter, the ratio of 
fluid thickness to triangular lattice parameter, determines the reduced distance from a 
dipole to its first image. For this reason u(A = C O )  is independent of r). Note that for given 
A and r )  the triangular system always has the lower energy. The linearity of U with r )  

shows that the first ( / = i l l  image planes provide the dominant image contribution to U 
(see text). 
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0 85 0 90 0 95 100 105 110 
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Figure 4. The reduced energies of undistorted and distorted triangular and square lattices 
as a function of A, the fluid thickness reduced by the lattice spacing of the triangular lattice. 
The parameter 1) governing the strength of images is ( a )  1) = 0.52, corresponding to the 
experiments of Skjeltorp (1983) and ( b )  1) = 1.0, the maximum possible value obtained 
when the ferro-fluid has a very high permittivity. The full line corresponds to the minimum 
energy for each lattice, the broken continuation being the energy only when distortions 
are suppressed. The distorted square becomes stable with respect to the distorted triangular 
system when ( a )  h > 0 . 9 3 ,  ( b )  A >  1.04. 

and the effective normalised thickness is A s =  (2/43)”*A (see (22)). Note that the 
lattice energies scale essentially linearly with 7. This reflects the fact that the contribu- 
tions from successive image planes die away exponentially and thus only the first, with 
weight 7, effectively contributes. It is therefore interesting to tabulate the results for 
each plane ( 1 )  for a particular case, that of a square lattice with As = 1, where the 
ferro-fluid thickness equals the actual spacing of the square lattice (see table 1). 

To get the total energy of a dipole interacting with other dipoles and all images 
one must take each plane, 1 (with the plane -1 if Ill> O ) ,  and weight it by (-7)”’ in a 
sum over all planes. The rapid decay with increasing ( I 1  illustrates the exponential 
decay demanded by V 2 0  = 0 and explains the linearity in figure 3 .  Table 1 also provides 
an independent check on our procedure since, by setting 171 = 1, we obtain the limits 
discussed by Cohen and Keffer (1955). 

(i)  7 = 1: planes stacked anti-ferromagnetically. This is their Z, limit. We find 
2ws = 9.687 441, in agreement with Cohen and Keffer. 
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Table 1. Interaction fields of individual image and real dipole planes for a square lattice 
with A, = 1 + A  = 0.9306. These are twice the energies, as noted in I 2. 

Plane I Field per plane 

0 9.033 619 

2 -5.549 778 X 

3 -1.028991 X10-6 

1 -3.274 647 X lo-'  

( i i )  7 = -1 (unphysical in the context of magnetostatic images): ferromagnetic 
stacking. This is the longitudinal limit of k + 0 for which the result is exactly 8 ~ / 3  
(Cohen and Keffer). This is again in accord with results in table 1 which give 

Since us - uT depends upon the value of 7 we show, in figure 4(a), uT and us as 
functions of A for 7 =OS2 (which corresponds to xr=4.ir(0.17), the susceptibility of 
the magnetic colloid used by Skjeltorp (1983)) and in figure 4( b ) ,  uT and us for 7 = 1.0, 
its largest possible value. We see from the figures that u T <  us, thus the triangular 
lattice is the more stable of the two configurations. Note that this result would not be 
a$ected by including dipole field corrections in uT and us. 

In summary, we find that the interaction energies of the underlying strictly 2~ 

lattices and their image systems are extremely close (differing from each other by 
approximately 1'10) with that of the triangular lattice being lower than that of the 
square one. 

2 ~ , = 8 . 3 7 7  58. 

3.3. Results for the distorted lattices 

The lattice sums required in order to calculate (to lowest order) the energies of the 
distorted square and triangular lattices relative to those of the undistorted structures, 
were given in 9 2.3. Since these sums are proportional to either l / r s  or l / r 7 ,  they 
converge much more rapidly than those needed for the undistorted case. We could 
therefore evaluate them to the desired accuracy by direct numerical summation. The 
results for the three distortion modes considered by us are given graphically as a 
function of A for 7 = 0.52 and 7 = 1.0 in figures 4 ( a )  and 4 ( b ) ,  respectively. 

For 7 = 0.52 we find that the strictly planar square lattice structure becomes unstable 
with respect to the distortion mode of figure 2 ( a )  when A > 0.85. The triangular lattice, 
on the other hand, remains stable until A = 0.88, at which point it becomes unstable 
with respect to the triangular distortion mode ( T A )  of figure 2 ( b ) .  The energy of the 
distorted square lattice decreases more rapidly with increasing A than that of the 
triangular one and, for A > 0.93, the square structure has the lower energy. Also, it is 
interesting to note that for higher values of A, uT,  < uT,. That is, when only triangular 
lattice configurations are considered, the energetically preferred structure changes from 
undistorted to three-sublattice distortion pattern to two-sublattice distortion pattern 
with increasing A. However, this change in the triangular lattice pattern occurs in the 
regime in which the distorted square lattice is the true stable structure. 

For 7 = 1 (see figure 4( b ) ) ,  the results are qualitatively similar to that for 7 = 0.52. 
Here the square lattice is energetically preferred for A >  1.04. 

Finally, we note that the equilibrium values t'(A, 7) found from (17a) are indeed 
small, satisfying t2 < 0.04 for A < 1.2 and t2 < 0.06 for A < 1.5. 
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4. Discussion and conclusions 

The main results of our analysis may be summarised as follows 
(a) In a sufficiently strong external field applied perpendicular to the paramagnetic 

layer, a collection of spherical non-magnetic inclusions will crystallise in a ZD array. 
(b) For sufficiently small layer thickness, the structure will be strictly 2 D  (i.e., the 

centres of all the spheres will be coplanar) and will form a triangular lattice. 
(c) As the layer thickness is increased, the 2~ triangular array becomes unstable 

with respect to displacements of the spheres perpendicular to the lattice plane. The 
structure is then quasi ZD and consists of three interlocking sublattices, located above, 
on, and below the initial plane (see figure 2(b)).  The displacements are small for layer 
thicknesses of experimental interest. 

(d) At still greater layer thicknesses, we find that the triangular array is no longer 
the state of minimum energy. Instead, a quasi 2~ square array is predicted to be the 
energetically preferred configuration. Here the square array is arranged in two sublat- 
tices, such that the nearest neighbours of a given sphere are all on the other sublattice. 
The spheres on one sublattice lie above and those on the other below the layer medium. 

Experimentally, Skjeltorp (1983, 1984) has studied the crystallisation of monodis- 
persed polystyrene spheres in a paramagnetic fluid. This fluid (Type EHG 905, 
manufactured by Ferrofluidics Corporation) has an initial susceptibility of (in SI units) 
xf = 4 ~ ( 0 . 1 7 ) .  Thus ff = 0.88 and 7 = 0.52. Skjeltorp studied two systems, both of 
which crystallised in triangular arrays. In the first, spheres of 1.9 p m  diameter were 
used and the approximate lattice spacing was a = 4.3 pm.  Thus 

y = V f f / 8 x a ’  = 1 x 

and the dipole-field correction term is indeed negligible. The layer thickness in this 
system was fixed by using a low concentration of 5 p m  spheres as spacers. However, 
there were indications (Skjeltorp, private communication) that these spheres were 
compressed and thus the actual thickness was probably less than the nominal one of 
5 pm.  Thus, for this system, A <  1.1. 

The second system used spheres of diameter 1 0 p m  with a lattice spacing of 
approximately 15 pm.  Thus, in this case, 

y = V j f / 8 n a 3  = 5 x lo-’, 

as noted in § 3. The nominal layer thickness was 15 p m  and we have A =  1. 
Theoretically, for 7 = 0.52, we have found that a triangular array should be stable 

only for layer thicknesses satisfying A < 0.93. At larger values of A, a square lattice 
configuration is energetically preferred. Such a configuration has not been observed 
by Skjeltorp. This may possibly be due to the actual thickness of his experimental 
systems being somewhat less than their nominal values. Further experiments to clarify 
this point are clearly needed. 

In addition to our prediction that a square lattice will exist for A sufficiently large, 
we also expect a continuous transition from a true 2~ triangular structure to one that 
is only quasi 2~ when A is increased from 0.85. Experimental verification of this 
prediction would also be of interest. One way of doing this would be to measure the 
effective dielectric constant of the system as a function of A. This will have a different 
functional dependence on A below and above the distortion threshold. 
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Finally, we note that Skjeltorp has suggested using these systems to study melting 
in two dimensions by varying the applied magnetic field and thereby varying the 
effective temperature. He has compared results found by this technique with those of 
molecular-dynamics computer simulations. However, as a consequence of the image 
dipoles which effectively exist in these systems, they are not truly two dimensional in 
character. Thus comparisons with ZD simulations must be regarded cautiously. 

Another possibility for melting also suggests itself as a consequence of our investiga- 
tions of energetically driven distortional instabilities. For a A such that a planar system 
was close to distorting out of plane perhaps melting to a distortionally disordered but 
still triangular phase will intervene before positional melting. The value of such a 
melting temperature, should it exist, will scale not only with the applied magnetic field 
but with A and 7 which govern distortions out of plane. As we mentioned before, 
this is a situation with certain similarities with the Blume-Emry-Griffiths model with 
spins of magnitude 1 on a triangular lattice. However the interaction, like l / r 5 ,  gives 
us differences from that model. The worries about the 3~ image assembly persist. 
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Appendix. A modification of the Ewald method of summation 

As explained by Nijboer and de Wette (1957) the Ewald method circumvents the poor 
convergence of dipole sums by partially summing in reciprocal or Fourier space where 
convergence is consequently good. We indicated in § 3 that modification is needed 
when the summation must proceed by grouping into planes. We therefore briefly 
review the method and introduce the necessary changes. 

Let the summand be f ( r A )  where A indicates a lattice point, in this case in real 
space, but also, for k A ,  in Fourier space. In our problem 

f( rA ) a Y ~ ~ (  er* + R ) /  i rA - R i 3 ,  ( A I )  

where Y,, is the second spherical harmonic and ( A l )  corresponds to (3b) .  The 2~ 

lattice vector rA is in the dipole plane and R is a vector perpendicular to the plane to 
the point at which the resultant field is to be evaluated. 

Because of its dipole origin,f(r,) is slowly convergent. Now, a sum over all lattice 
points can be rearranged identically in the form: 

where +(x) is an otherwise arbitrary function which decays rapidly to zero as x+oo 
and approaches unity as x + 0. The first part can now be evaluated conventionally; 
the second part has the same poor convergence at large r, as before but, in addition, 
is flat at small r,. A flat function in real space is sharply peaked in k space, as 
exemplified in an extreme form by the 6 function. The transformation to k space is 
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effected by first setting 

- 4 ) ~  J d r w ( r ) ( l - 4 ( r ) ) f ( r )  

with 

w ( r)  = 1 6 ( r - rA ). 
A 

The right-hand side of (A3) is further transformed using Parcevals theorem 

1 w ( r ) ( l -  4 ( r ) ) f ( r )  dr-, 5 d k G ( k ) W ( 1 -  4 ) f l  

where G ( k )  is the Fourier transform (FT) of w ( r ) :  

G(k) = d r  exp(2rik.  r ) w ( r )  I 
1 

= c exp(2r ik .  r A )  E 6 (  k - k , )  
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(A31 

A U A  

where U is the volume (area) of a unit cell of the real lattice. Sums (in k space) are 
now obtained by substituting (A4) into (A5) to give 

A good choice for the separation function has been shown by Nijboer and de Wette 
(1957) to be the incomplete gamma function, T(n, x). Convergence in real space is 
extremely rapid and the Fourier transforms (1 - T)f for functions f commonly encoun- 
tered (inverse powers and Legendre polynomials) are easily obtained and yield rapidly 
convergent k-space sums. 

To this point we have not specified the spatial dimension of the lattices and hence 
the sums and integrals involved. Nijboer and de Wette (1957) have shown how to 
treat sums where (a)  the origin is either a lattice point ( R  = 0) or (b) the origin is 
displaced a distance R from a lattice point, where R is a vector in the space of the 
lattice, e.g. in ZD when the lattice vectors rA span a ZD lattice. In our case f( r A )  involves 
an R orthogonal to the lattice vectors r,. We therefore proceed by first carefully 
specifying, in (A3) to (A7),  the dimensionalities of the relevant quantities by appropriate 
subscripts and superscripts: 

C f ( 1 -  4 )  = d 3 r w ( r ) ( l  - 4(r))f(r) ('43b) 

(A4b) 

(A561 

A I 
~ ( 1 -  &)f+ 1 d 3 k G ( k ) n 3 { ( l  - I # J ) f )  

2D 

w ( r )  = c 63(r- r A ) ~  
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Now U is the unit cell area of the 2~ real lattice and k ,  is the component of k in the 
plane of the reciprocal space spanned by the 2~ kA. 

Nijboer and de Wette show that an appropriate splitting function 4 ( r )  is 

4 ( r )  = r (5/2,  r r ’ ) / r (5/2)  

and that (1 -c$(r ) )  = y ( 5 / 2 ,  r r 2 ) / r ( 5 / 2 )  (here y ( n ,  x )  = T(n) -T(n, x )  is the com- 
plementary form) has the Fourier transform 

Given that our f in ( A l )  is displaced by the vector R we must, according to the usual 
rules of Fourier transforms, multiply (A7b) by exp(2nik - R )  = exp(2r ik l lR)  where 
k,, is the component of k orthogonal to the kA plane. Inserting (A6b) for & ( k )  and 
(A7b) for FT((1- 4)f) into (A5b), and noting that j dk S2+ dkll d2k,6(k, - k A )  can 
be reduced as a consequence of the &function acting in two of the three dimensions, 
the k-space part of the summand becomes 

We can further reduce this expression since r( 1, x )  is elementary (a simple exponential) 
and YZ0( 0)  cc (1 - 1 sin’ e )  whence the integral in (A8) becomes 

J dkll  exp(2rikl lR - nki) [ I  -$k:/(k: + ki)]. (‘49) 

The first part of (A9) is, by completion of the square, simply exp(-rR’). The second 
part is reducible to the complementary error function multiplied by Gaussians. To see 
this, use the parametrisation 

do the ]dki l  and finally, via a change of variable, ]d,y. The result is the sum of the 
two terms (with + and - )  

- i r k A  exp[-nR2+ n(kA *R)*] erfC(n”’(kA *R)) .  ( A l l )  

Having evaluated the k-space part of the sum, we combine it with the first (real space) 
part in (A2) to obtain the overall result (21) given in § 3. 

The incomplete gamma function is related to elementary functions via the recursion 
relation 

T ( a + l , x ) = a T ( a , x ) + x n  e-x (‘412) 

and, since a is half-integral, we can also use 

T(- i ,  x’) = n1I2 erfc(x) = 2 e-12 dt, 

whence (21 ) reduces to Gaussians, complementary error functions and exponentials 
in addition to the l / r 3  factor. Thus all the sums in (21) are seen to be extremely 
rapidly convergent. 
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When R is large, the largest terms in (21) come from those k,  taking their smallest 
non-zero values and considering the contribution with the ( - )  sign in the last term 
involving erfc. This leading term is indeed exponentially decaying in R as required 
by the general argument given in 0 3. 

When R = 0 we have the sum over the plane of real dipoles. The angular factor Y 
becomes a constant and we naturally exclude from the sum the contribution at the 
origin ( r ,  = O )  the resultant field is being evaluated. The case R = O  is a standard 
problem (see Nijboer and de Wette 1957). Excluding the origin, one obtains for the 
in-plane sum 

where the prime on X indicates this exclusion. One can then reduce (21) to (A14) by 
letting R + 0, using (A12) to reduce the order of r, (A13) to introduce erfc and noting 
that 
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